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Abstract.  We consider driven sine-Gordon equation on a metric star graph (Y-junction) by choosing 

driving potential in the form of periodic monochromatic function. Solutions of the problems are obtained 

numerically. Transmission of sine-Gordon solitons through the branching point of the graph is analyzed 

using the contour plots of the solution. Obtained solutions are used for modeling of soliton dynamics 

electronic properties of branched Josephson junction. Current profile and current-voltage characteristics 

are plotted and analyzed. The approach used for the case of the star-branched Josephson junction can be 

extended to arbitrary branching architectures. 
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1.      Introduction 

 

Fabrication of the functional materials having high resource saving properties and 

maximum of device optimization and miniaturization, is a key priority for modern 

condensed matter physics and material science. Solving such a task requires deep 

understanding and manipulation by underlying fundamental phenomena. An important 

task in this context is reducing the dimension, or using low-dimensional functional 

materials for device fabrication. Remarkable feature of such dimensional reduction is 

possibility for tuning of material and device properties. Especially, such a reduction is 

effective in case of quasi-one-dimensional branched structures and networks. Playing 

with the device branching (architecture) topology is a powerful tool for tuning of the 

electronic, optical, thermal and mechanical properties in low-dimensional functional 

materials having branched structure. Transmission quasiparticles and waves through the 

branching points (nodes) of the structure and providing minimum of backscattering in 

such transmission allows to reduce energy and signal loss in utilization of branched low-

dimensional materials in different devices. Among other devices fabricated on the basis 

of low-dimensional functional materials, Josephson junctions attracted much attention 

during past few decades. Potential use of Josephson junctions as the basic functional unit 

of SQUID, practical applications in creating of qubits and other possible applications in 
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nanoelectronics in quantum technology, made them one of the central elements of the 

emerging technologies. Different versions of Josephson junction based devices have been 

considered during the past few decades. Modeling solitons in terms of sine-Gordon 

equation is discussed in the (Barone & Paternò, 1982; Askerzade et al., 2017; Maraver et 

al., 2014; Likharev, 1986). One of the interesting versions of such device is so called 

branched Josephson junction or Josephson junction network (Susanto et al., 2004; 

Matrasulov et al., 2020; Burioni et al., 2006; Burioni et al., 2005). Such devices provide 

powerful tool for tuning of different quantum and topological phenomena underlying 

Josephson junction physics (Askerzade & Salati, 2022; Askerzade, 2015; Askerzade & 

Kornev, 1994). In particular, by choosing proper device branching architecture one can 

achieve needed regime of sine-Gordon soliton dynamics, Josephson current and current-

voltage characteristics. In this paper we address the problem of periodically driven 

branched Josephson junction which can appear, e.g., in multiterminal Josephson junctions 

(Amin et al., 2002a; Amin et al, 2002b; Amin et al., 2001; Heck et al., 2014; Golikova 

et al., 2014; Riwar et al., 2016; Zazunov et al., 2017; Nowak et al., 2019; Pankratova et 

al., 2020; Melin, 2022; Amet et al., 2022; Gavensky et al., 2023). Dynamics of solitons 

in such structures can be modelled in terms of a sine-Gordon equation on metric graphs, 

where the kink-solitons appear as the phase difference in Josephson junction branches. It 

should be noted that modeling solitons using the metric graph based approach attracted 

much interest in the literature during the past two decades (Susanto et al., 2004; Sobirov 

et al., 2016; Sabirov et al., 2018; Babajanov et al., 2018; Matrasulov et al., 2020; Caputo 

& Dutykh, 2014). Discussion of the sine-Gordon equation on metric graphs describing 

the phase difference in a 0-π and the specific case of a tricrystal boundary with a π 

Josephson junction as one of the three arms can be found in Ref. (Susanto et al., 2004). 

Integrability and the soliton solutions of the sine-Gordon equation on metric graphs was 

considered in (Sobirov et al., 2016), where existence of infinitely many conservation laws 

was proven and exact soliton solution were obtained. It was shown that when the problem 

is integrable, transmission of the sine-Gordon solitons through the network vertices is 

reflectionless. Stationary sine-Gordon equation on finite metric graphs have been studied 

in the Refs. (Sabirov et al. 2018; Babajanov et al. 2018; Matrasulov et al. 2020; Sabirov, 

Sobirov, Babajanov & Matrasulov, 2013). Static sine-Gordon solitons in branched 

Josephson junctions were considered in the Ref. (Matrasulov et al., 2020). We note that 

the driven sine-Gordon equation on a line is studied in the Refs. (Gul et al., 2018; 

Pankratov, 2002; Jagtap et al., 2017; Bennett et al., 1982; Malomed, 1989). Here we use 

a time-dependent sine-Gordon equation on graphs with external, time-periodic potential 

for modeling of driven Josephson junction. By solving the problem numerically the time-

dependent driven sine-Gordon equation, we compute the current-voltage characteristics 

of the device. 

The paper is organized as follows. In the next section we introduce the driven sine-

Gordon equation on the star graph. In Section 3, we present the numerical results, current-

voltage characteristics and discussion of the results. Section 4 presents some concluding 

remarks. 
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2.      Driven sine-Gordon equation on a star graph 

 

Driven, or modified sine-Gordon equation on a real line can be written as Gul et al. 

(2018) 

 

𝜕𝑡
2𝜓(𝑥, 𝑡) − 𝜕𝑥

2𝜓(𝑥, 𝑡) + sin[𝜓(𝑥, 𝑡)] = 𝛾 + 𝜆𝜕𝑡𝜓(𝑥, 𝑡) +  𝑓 cos(𝜔𝑡), (1) 

 

where 𝛾, 𝑓, 𝜔 are constants. 

Eq. (1) described phase difference in a Josephson junction driven by external time-

periodic (e.g., AC) field. Unlike to standard (integrable) sine-Gordon equation, it does 

not approve analytical soliton solutions. Therefore, one needs to solve it numerically. 

Here we consider driven sine-Gordon equation on a metric graph, by focusing in star, i.e. 

𝑌 −junction branched graph. Namely, we consider the star graph with three semi-infinite 

bonds 𝑏𝑗 (see, Fig. 1), for which a coordinate 𝑥𝑗 is assigned. Choosing the origin of 

coordinates at the vertex, 0 for bond 𝑏1 we put 𝑥1 ∈  (−∞, 0] and for 𝑏2,3 we fix 𝑥2,3 ∈
 [0, +∞). 

 

 

Fig. 1. Basic star graph 

 

Then driven sine-Gordon equation can be written on each bond of the star graph as  

 

𝜕𝑡
2𝜓𝑗(𝑥, 𝑡) − 𝛼𝑗

2𝜕𝑥
2𝜓𝑗(𝑥, 𝑡) + 𝛽𝑗

2 sin[𝜓𝑗(𝑥, 𝑡)]

= 𝛾𝑗 + 𝜆𝑗𝜕𝑡𝜓𝑗(𝑥, 𝑡) + 𝑓𝑗 cos(𝜔𝑗𝑡), 

(2) 

 

Vertex boundary conditions which can be derived from fundamental conservation laws, 

such as charge and energy conservation, are given as (Sobirov et al., 2016): 

 

𝜓1(𝑥, 𝑡)|𝑥=0  = 𝜓2(𝑥, 𝑡)|𝑥=0 = 𝜓3(𝑥, 𝑡)|𝑥=0, 
𝑎1𝜕𝑥𝜓1(𝑥, 𝑡)|𝑥=0 = 𝑎2𝜕𝑥𝜓2(𝑥, 𝑡)|𝑥=0 + 𝑎3𝜕𝑥𝜓3(𝑥, 𝑡)|𝑥=0. 

(3) 

  

 

From vertex boundary conditions (3) one can derive the following constraint: 

 

𝑎𝑗  =
𝛼𝑗

𝛽𝑗
,

𝛼1

𝛽1
 =

𝛼2

𝛽2
+

𝛼3

𝛽3
, (4) 

 

which provides condition to be fulfilled by the solution of Eq. (1) to fulfill the vertex 

boundary conditions given by Eq. (2), i.e. condition for fulfilling by the solution of driven 

sine-Gordon equation on a line to that star on a graph. Assuming that the constraint (4) is 

fulfilled, we solved the problem given by Eqs. (2) and (3). For numerical solution we used 
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fourth-order Runge-Kutta method for the system of second order differential equations in 

Eq. (2). In order to apply this method one needs to rewrite Eq. (2) as in the form 

 

𝜕𝑡𝜓𝑗(𝑥, 𝑡) = 𝜙𝑗(𝑥, 𝑡), 

𝜕𝑡𝜙𝑗(𝑥, 𝑡) − 𝛼𝑗
2𝜕𝑥

2𝜓𝑗(𝑥, 𝑡) + 𝛽𝑗
2 sin[𝜓𝑗(𝑥, 𝑡)]

= 𝛾𝑗 + 𝜆𝑗𝜕𝑡𝜓𝑗(𝑥, 𝑡) + 𝑓𝑗 cos(𝜔𝑗𝑡), 

(5) 

 

The initial condition is imposed in the form of anti-kink solution of sine-Gordon equation 

on a graph considered in Sobirov et al. (2016) which is given by 

 

𝜓𝑗(𝑥, 0) = 4 arctan

[
 
 
 

exp

(

 −

𝛽𝑗

𝛼𝑗
(𝑥 − 𝑥0)

√1 − 𝑣2

)

 

]
 
 
 

, 

 

 

where 𝑣 is the velocity of the anti-kink. For all calculations, we choose the parameters 𝛼𝑗 

and 𝛽𝑗 as fulfilling the constraint in Eq. (4), namely 𝛼1 = 1, 𝛼2 = 0.6, 𝛼3 = 0.4 and 

𝛽1 = 𝛽2 = 𝛽3 = 1.  

Figs. (2) and (3) present the plots of numerically obtained solution of the problem 

given by Eqs. (2) and (3). Dynamics of sine-Gordon (kink) soliton near the branching 

point can be analyzed from these plots. Namely, transmission of the soliton through the 

vertex is accompanied by reflection (backscattering). Such a behavior is opposite to what 

was observed in case of unperturbed sine-Gordon equation on metric graphs, where 

transmission of kink solitons through the vertex for the case when the constraint in Eq. 

(4) was reflectionless (Sobirov et al., (2016).  

 

 
 

Fig. 2. Contour plot of numerical solution of Eq. (2) for parameters: 

 𝜸𝒋 = 𝟎, 𝝀𝒋 = 𝟎. 𝟎𝟓, 𝒇𝒋 = 𝟎. 𝟏, 𝝎𝒋 = 𝟐. 
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Fig. 3. Contour plot of numerical solution of Eq. (2) for parameters: 

 𝜸𝒋 = 𝟎. 𝟏𝟓, 𝝀𝒋 = 𝟎. 𝟎𝟓, 𝒇𝒋 = 𝟎. 𝟏, 𝝎𝒋 = 𝟐. 

Such a difference can be observed by the role of the external driving potential, that makes 

the problem non-integrable. 

 

3.      Branched Josephson junction 

 

Here we apply the results of the previous section to branched Josephson junction. 

The latter is a device presented in Fig. 4, that consists of planar superconductor sheets, 

connected each other via the branched normal metal (or insulator) having 𝑌 −junction 

shape with long branches. Such structure can be considered as a version of the so-called 

multi-terminal Josephson junction considered in the Refs. (Amin et al., 2002a; Amin et 

al., 2002b; Amin et al., 2001; Riwar et al., 2016; Pankratova et al., 2020). The most 

closest to our model Josephson junction device was quite recently considered in 

(Gavensky et al., 2023). The phase difference on each branch such device is described in 

terms of Eq. (2) and fulfills the vertex boundary conditions given by Eq. (3).  

 

 
Fig. 4. Sketch for the branched Josephson junction 
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Therefore the numerical results obtained in the previous section can be used for 

computing its electronic properties, e.g. the profile of current and the current-voltage 

characteristics. To do this, we can use relation of the between current and phase 

difference, as well as relation between voltage and phase difference, which are given by 

(respectively) (Barone et al., 1971). 

𝐽𝑗 = 𝐽0𝑗 sin (𝜓𝑗(𝑥, 𝑡)),  

𝑉𝑗 =
ℏ

2𝑒
𝜕𝑡𝜓𝑗(𝑥, 𝑡) 

 

 

where 𝐽0𝑗 is the amplitude of the Josephson current. Fig. 5 presents the plots of profile of 

the current on each branch of the Josephson junction at different time moments. Crucial 

change of the current's profile in transmission from the first branch to second and third 

ones can be clearly seen from the plots. Symmetry between the second and third bonds is 

caused by the initial condition, which imposed on first bond as incoming sine-Gordon 

kink at 𝑡 = 0.  

 
 

Fig. 5. Current profile on each branch of the Josephson junction presented in Fig. (4) at different time 

moments. The parameters are chosen as 𝜸𝒋 = 𝟎. 𝟏𝟓, 𝝀𝒋 = 𝟎. 𝟎𝟓, 𝒇𝒋 = 𝟎. 𝟏, 𝝎𝒋 = 𝟐 

In Figs. (6) and (7) demonstrated the current-voltage characteristics on each branch 

of the star shaped branched Josephson junction (see, Fig. 4). 

 

 
 

Fig. 6. Current-voltage characteristics on each branch of the Josephson junction presented in Fig. (4) for 

the parameters: 𝜸𝒋 = 𝟎, 𝝀𝒋 = 𝟎. 𝟎𝟓, 𝒇𝒋 = 𝟎. 𝟏, 𝝎𝒋 = 𝟐. 
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Fig. 7. Current-voltage characteristics on each branch of the Josephson junction presented in Fig. (4) for 

the parameters: 𝛾𝑗 = 0.15, 𝜆𝑗 = 0.05, 𝑓𝑗 = 0.1, 𝜔𝑗 = 2. 

 

Abrupt change of the shape of the  𝐼 − 𝑉  curve can be observed for these plots, too. 

Such a change can be explained by existence of certain backscattering and dominating 

(with respect to backscattering) at the junction's branching point. It is clear that by 

manipulating branch lengths and the sizes of superconducting domains, one can achieve 

tuning of the current-voltage characteristics.  

Especially, such a tuning becomes effective, when one considers more complicated 

(than the simple 𝑌 − junction) branching architectures, such as tree, loop, octagon, etc. 

 

4.      Conclusions 

 

In this paper we studied soliton dynamics in branched Josephson junction driven by 

external time-periodic field. The whole is modelled in terms of modified sine-Gordon 

equation containing time-periodic potential. By solving sine-Gordon equation 

numerically we explored soliton dynamics on each branch and transmission of sine-

Gordon solitons through the junction's branching point. Current-voltage characteristics of 

the device is plotted using the obtained solution of the sine-Gordon equation. The model 

we proposed can be fabricated and experimentally studied by splitting bulk planar 

superconductor via branched (𝑌 −junction) normal metal or insulator. Although the 

above treatment dealt with star-shaped branched Josephson junction, the approach we 

used can be applied for arbitrary branching architecture. Such a study is a subject for our 

forthcoming research that should appear in nearest future. The above results can be used 

for engineering different micro- and nano-scale devices on the basis of branched 

Josephson junctions 
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